The baryon density of the Universe gives a better burning rate of deuterium



[ad_1]

  • 1.

    Cyburt, RH, Fields, BD, Olive, KA & Yeh, T.-H. Big Bang Nucleosynthesis: Current State. Rev. Mod. Phys. 88, 015004 (2016).

    Article about Google Scholar ads

  • 2.

    Tanabashi, M. et al. Review of particle physics. Phys. Rev. D 98, 030001 (2018).

    Article about Google Scholar ads

  • 3.

    Cooke, R., Pettini, M. & Steidel, C. Determination of one percent of primordial deuterium abundance. Astrophys. J. 855, 102 (2018).

    Article about Google Scholar ads

  • 4.

    Pitrou, C., Coc, A., Uzan, J. & Vangioni, E. Precision Big Bang Nucleosynthesis with Improved Helium-4 Predictions. Phys. representative. 754, 1–66 (2018).

    ADS MathSciNet CAS Google Scholar Article

  • 5.

    Coc, A. et al. New reaction rates for a better calculation of the primordial D / H and the cosmic evolution of deuterium. Phys. Rev. D ninety two, 123526 (2015).

    Article about Google Scholar ads

  • 6.

    Di Valentino, E. et al. Sounding nuclear rates with Planck and BICEP2. Phys. Rev. D 90, 023543 (2014).

    Article about Google Scholar ads

  • 7.

    Aghanim, N. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Google Scholar article

  • 8.

    Broggini, C., Bemmerer, D., Caciolli, A. & Trezzi, D. LUNA: status and prospects. Prog. Part. Nucl. Phys. 98, 55–84 (2018).

    Article ADS CAS Google Scholar

  • 9.

    Cavanna, F. & Prati, P. Direct measurement of nuclear cross sections of astrophysical interest: results and perspectives. Int. J. Mod. Phys. A 33, 1843010–1843042 (2018).

    Article ADS CAS Google Scholar

  • 10.

    Mossa, V. et al. Setup commissioning for better measurement of D (p,c)3It has cross section at the energies of the Big Bang nucleosynthesis. EUR. Phys. J. A 56, 144 (2020).

    Article ADS CAS Google Scholar

  • 11.

    Formicola, A. et al. The LUNA II 400kV accelerator. Nucl. Instrument Methods Phys. Res. A 507, 609-616 (2003).

    Article ADS CAS Google Scholar

  • 12.

    Fields, BD, Olive, KA, Yeh, T.-H. & Young, C. Big Bang Nucleosynthesis after Planck. J. Cosmol. Astropart. Phys. 03, 010 (2020).

    Article on ADS MathSciNet Google Scholar

  • 13.

    Casella, C. et al. First measurement of d (p,c)3It has a cross section up to the Gamow solar peak. Nucl. Phys. A 706, 203-216 (2002).

    Article about Google Scholar ads

  • 14.

    But, L. et al. Measurements of 1H (d→,c)3He is 2H (p→,c)3It has very low energies. Phys. Rev. C 55, 588–596 (1997).

    Article ADS CAS Google Scholar

  • 15.

    Griffiths, G., Larson, E. & Robertson, L. The capture of protons by deuterons. Can he. J. Phys. 40, 402-411 (1962).

    Article about Google Scholar ads

  • 16.

    Schmid, G. et al. The 2H (p,c)3He is 1H (d,c)3It has reactions below 80 keV. Phys. Rev. C 56, 2565-2581 (1997).

    Article ADS CAS Google Scholar

  • 17.

    Tišma, I. et al. Experimental section and angular distribution of the 2H (p,c)3It reacts to the energies of the Big Bang nucleosynthesis. EUR. Phys. J. A 55, 137 (2019).

    Article about Google Scholar ads

  • 18.

    Marcucci, L., Mangano, G., Kievsky, A. & Viviani, M. Implication of the protone-deuteron radiative capture for Big Bang nucleosynthesis. Phys. Rev. Lett. 116, 102501 (2016).

    Article ADS CAS Google Scholar

  • 19.

    Adelberger, E. et al. Cross sections of solar fusion. II. The pp chain and CNO cycles. Rev. Mod. Phys. 83, 195–245 (2011).

    Article ADS CAS Google Scholar

  • 20.

    Schmid, G. et al. Effects of non-nucleonic degrees of freedom in D ( ( overrightarrow {{p}} ), c)3He and the p( ( overrightarrow {{d}} ), c)3It has reactions Phys. Rev. Lett. 76, 3088-3091 (1996).

    Article ADS CAS Google Scholar

  • 21.

    Iliadis, C., Anderson, KS, Coc, A., Timmes, FX and Starrfield, S. Bayesian estimation of thermonuclear reaction rates. Astrophys. J. 831, 107 (2016).

    Article about Google Scholar ads

  • 22.

    Council, R. et al. PArthENoPE reloaded. Comput. Phys. Commun. 233, 237–242 (2018).

    Article ADS CAS Google Scholar

  • 23.

    De Salas, P. & Pastor, S. Relic neutrino decoupling with revisited flavor oscillations. J. Cosmol. Astropart. Phys. 07, 051 (2016).

    Google Scholar article

  • 24.

    Mangano, G. et al. Decoupling of relic neutrinos including flavor oscillations. Nucl. Phys. B. 729, 221-234 (2005).

    Article about Google Scholar ads

  • 25.

    Aver, E., Olive, KA, and Skillman, ED The effects of He I λ10830 on the determinations of the abundance of helium. J. Cosmol. Astropart. Phys. 07, 011 (2015).

    Article about Google Scholar ads

  • 26.

    Peimbert, A., Peimbert, M. & Luridiana, V. The abundance of primordial helium and the number of neutrino families. Rev. Mex. Astron. Astrophys. 52, 419-424 (2016).

    Google Scholar CAS ADS

  • 27.

    Valerdi, M., Peimbert, A., Peimbert, M. & Sixtos, A. Determination of primordial helium abundance based on NGC 346, a H ii region of the Small Magellanic Cloud. Astrophys. J. 876, 98 (2019).

    Article ADS CAS Google Scholar

  • 28.

    Izotov, YI, Thuan, TX and Guseva, NG The primordial abundance of deuterium of the lower metal-poorest damped Lyα system. Mon. Not. R. Astron. Soc. 445, 778–793 (2014).

    Article ADS CAS Google Scholar

  • 29.

    Griffiths, G., Lal, M. & Scarfe, C. The reaction D (p,c)3It has less than 50 keV. Can he. J. Phys. 41, 724–736 (1963).

    Article ADS CAS Google Scholar

  • 30.

    Warren, JB, Erdman, KL, Robertson, LP, Axen, DA & Macdonald, JR Photodisintegration of 3It is near the threshold. Phys. Rev. 132, 1691–1692 (1963).

    Article ADS CAS Google Scholar

  • 31.

    Geller, K., Muirhead, E. & Cohen, L. The 2H (p,c)3He has reaction to the breaking threshold. Nucl. Phys. A 96, 397-400 (1967).

    Article ADS CAS Google Scholar

  • 32.

    Ferraro, F. et al. A high-efficiency gas target setup for underground experiments and re-determination of the 189.5 keV branch ratio 22Born(p,c)23And resonance. EUR. Phys. J. A 54, 44 (2018).

    Article about Google Scholar ads

  • 33.

    Rolfs, C. & Rodney, W. Cauldrons in the cosmos (Univ. Chicago Press, 1988).

  • 34.

    Serpico, PD et al. Nuclear Reaction Network for Primordial Nucleosynthesis: A Detailed Analysis of Rates, Uncertainties, and Yields of Light Nuclei. J. Cosmol. Astropart. Phys. 2004, 010 (2004).

    Google Scholar article

  • 35.

    Nollett, KM & Burles, S. Estimation of reaction rates and uncertainties for primordial nucleosynthesis. Phys. Rev. D 61, 123505 (2000).

    Article about Google Scholar ads

  • 36.

    Tumino, A. et al. New determination of the 2H (d,p)3But no 2H (d,n)3It has speed of reaction to astrophysical energies. Astrophys. J. 785, 96 (2014).

    Article about Google Scholar ads

  • 37.

    Pisanti, O. et al. PArthENoPE: public algorithm for the evaluation of the nucleosynthesis of primordial elements. Comput. Phys. Commun. 178, 956–971 (2008).

    Article ADS CAS Google Scholar

  • [ad_2]
    Source link