[ad_1]
Cyburt, RH, Fields, BD, Olive, KA & Yeh, T.-H. Big Bang Nucleosynthesis: Current State. Rev. Mod. Phys. 88, 015004 (2016).
Tanabashi, M. et al. Review of particle physics. Phys. Rev. D 98, 030001 (2018).
Cooke, R., Pettini, M. & Steidel, C. Determination of one percent of primordial deuterium abundance. Astrophys. J. 855, 102 (2018).
Pitrou, C., Coc, A., Uzan, J. & Vangioni, E. Precision Big Bang Nucleosynthesis with Improved Helium-4 Predictions. Phys. representative. 754, 1–66 (2018).
Coc, A. et al. New reaction rates for a better calculation of the primordial D / H and the cosmic evolution of deuterium. Phys. Rev. D ninety two, 123526 (2015).
Di Valentino, E. et al. Sounding nuclear rates with Planck and BICEP2. Phys. Rev. D 90, 023543 (2014).
Aghanim, N. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).
Broggini, C., Bemmerer, D., Caciolli, A. & Trezzi, D. LUNA: status and prospects. Prog. Part. Nucl. Phys. 98, 55–84 (2018).
Cavanna, F. & Prati, P. Direct measurement of nuclear cross sections of astrophysical interest: results and perspectives. Int. J. Mod. Phys. A 33, 1843010–1843042 (2018).
Mossa, V. et al. Setup commissioning for better measurement of D (p,c)3It has cross section at the energies of the Big Bang nucleosynthesis. EUR. Phys. J. A 56, 144 (2020).
Formicola, A. et al. The LUNA II 400kV accelerator. Nucl. Instrument Methods Phys. Res. A 507, 609-616 (2003).
Fields, BD, Olive, KA, Yeh, T.-H. & Young, C. Big Bang Nucleosynthesis after Planck. J. Cosmol. Astropart. Phys. 03, 010 (2020).
Casella, C. et al. First measurement of d (p,c)3It has a cross section up to the Gamow solar peak. Nucl. Phys. A 706, 203-216 (2002).
But, L. et al. Measurements of 1H (d→,c)3He is 2H (p→,c)3It has very low energies. Phys. Rev. C 55, 588–596 (1997).
Griffiths, G., Larson, E. & Robertson, L. The capture of protons by deuterons. Can he. J. Phys. 40, 402-411 (1962).
Schmid, G. et al. The 2H (p,c)3He is 1H (d,c)3It has reactions below 80 keV. Phys. Rev. C 56, 2565-2581 (1997).
Tišma, I. et al. Experimental section and angular distribution of the 2H (p,c)3It reacts to the energies of the Big Bang nucleosynthesis. EUR. Phys. J. A 55, 137 (2019).
Marcucci, L., Mangano, G., Kievsky, A. & Viviani, M. Implication of the protone-deuteron radiative capture for Big Bang nucleosynthesis. Phys. Rev. Lett. 116, 102501 (2016).
Adelberger, E. et al. Cross sections of solar fusion. II. The pp chain and CNO cycles. Rev. Mod. Phys. 83, 195–245 (2011).
Schmid, G. et al. Effects of non-nucleonic degrees of freedom in D ( ( overrightarrow {{p}} ), c)3He and the p( ( overrightarrow {{d}} ), c)3It has reactions Phys. Rev. Lett. 76, 3088-3091 (1996).
Iliadis, C., Anderson, KS, Coc, A., Timmes, FX and Starrfield, S. Bayesian estimation of thermonuclear reaction rates. Astrophys. J. 831, 107 (2016).
Council, R. et al. PArthENoPE reloaded. Comput. Phys. Commun. 233, 237–242 (2018).
De Salas, P. & Pastor, S. Relic neutrino decoupling with revisited flavor oscillations. J. Cosmol. Astropart. Phys. 07, 051 (2016).
Mangano, G. et al. Decoupling of relic neutrinos including flavor oscillations. Nucl. Phys. B. 729, 221-234 (2005).
Aver, E., Olive, KA, and Skillman, ED The effects of He I λ10830 on the determinations of the abundance of helium. J. Cosmol. Astropart. Phys. 07, 011 (2015).
Peimbert, A., Peimbert, M. & Luridiana, V. The abundance of primordial helium and the number of neutrino families. Rev. Mex. Astron. Astrophys. 52, 419-424 (2016).
Valerdi, M., Peimbert, A., Peimbert, M. & Sixtos, A. Determination of primordial helium abundance based on NGC 346, a H ii region of the Small Magellanic Cloud. Astrophys. J. 876, 98 (2019).
Izotov, YI, Thuan, TX and Guseva, NG The primordial abundance of deuterium of the lower metal-poorest damped Lyα system. Mon. Not. R. Astron. Soc. 445, 778–793 (2014).
Griffiths, G., Lal, M. & Scarfe, C. The reaction D (p,c)3It has less than 50 keV. Can he. J. Phys. 41, 724–736 (1963).
Warren, JB, Erdman, KL, Robertson, LP, Axen, DA & Macdonald, JR Photodisintegration of 3It is near the threshold. Phys. Rev. 132, 1691–1692 (1963).
Geller, K., Muirhead, E. & Cohen, L. The 2H (p,c)3He has reaction to the breaking threshold. Nucl. Phys. A 96, 397-400 (1967).
Ferraro, F. et al. A high-efficiency gas target setup for underground experiments and re-determination of the 189.5 keV branch ratio 22Born(p,c)23And resonance. EUR. Phys. J. A 54, 44 (2018).
Rolfs, C. & Rodney, W. Cauldrons in the cosmos (Univ. Chicago Press, 1988).
Serpico, PD et al. Nuclear Reaction Network for Primordial Nucleosynthesis: A Detailed Analysis of Rates, Uncertainties, and Yields of Light Nuclei. J. Cosmol. Astropart. Phys. 2004, 010 (2004).
Nollett, KM & Burles, S. Estimation of reaction rates and uncertainties for primordial nucleosynthesis. Phys. Rev. D 61, 123505 (2000).
Tumino, A. et al. New determination of the 2H (d,p)3But no 2H (d,n)3It has speed of reaction to astrophysical energies. Astrophys. J. 785, 96 (2014).
Pisanti, O. et al. PArthENoPE: public algorithm for the evaluation of the nucleosynthesis of primordial elements. Comput. Phys. Commun. 178, 956–971 (2008).
Source link